Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Perinatol ; 44(2): 266-272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007593

RESUMO

OBJECTIVE: To investigate a novel servo pressure (SP) setting during high-frequency jet ventilation (HFJV) for a lung protective strategy in a neonatal model of acute respiratory distress. STUDY DESIGN: Comparison of efficacy between variable (standard) and fixed SP settings in a randomized animal study using rabbits (n = 10, mean weight = 1.80 kg) with surfactant deficiency by repeated lung lavages. RESULTS: Rabbits in the fixed SP group had greater peak inspiratory pressure, SP, minute volume, pH, and PaO2, and lower PaCO2 after lung lavage than the variable SP group. Lung volume monitoring with electrical impedance tomography showed that fixed SP reduced the decline of the global lung tidal variation at 30 min after lung lavage (-17.4% from baseline before lavage) compared to variable SP (-44.9%). CONCLUSION: HFJV with fixed SP significantly improved gas exchange and lung volumes compared to variable SP. Applying a fixed SP may have important clinical implications for patients receiving HFJV.


Assuntos
Ventilação em Jatos de Alta Frequência , Ventilação de Alta Frequência , Surfactantes Pulmonares , Animais , Humanos , Coelhos , Tensoativos , Pulmão , Medidas de Volume Pulmonar , Respiração Artificial/métodos
2.
Langmuir ; 38(28): 8677-8685, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35786968

RESUMO

A sorbent with a high enough capacity for NH4+ could serve as an oral binder to lower urea levels in end-stage kidney disease (ESKD) patients. A hydrogen-loaded cation exchanger such as zirconium phosphate Zr(HPO4)2·H2O (ZrP) is a promising candidate for this application. However, the NH4+ binding selectivity versus other ions must be improved. Here, we have developed a gas-permeable and hydrophobic surface coating on an amorphous form of ZrP using tetraethyl orthosilicate and methoxy-terminated polydimethylsiloxane. The hydrophobic coating serves as a barrier to ions in water solution from reaching the ion-exchanger's surface. Meanwhile, its gas-permeable nature allows for gaseous ammonia transfer to the cation exchanger. In vitro studies were designed to replicate the small intestine's expected ion concentrations and exposure time to the sorbent. The effectiveness of the coating was measured with NH4+ and Ca2+ solutions and uncoated ZrP as the negative control. X-ray photoelectron spectroscopy and scanning electron microscopy measurements show that the coating successfully modifies the surface of the cation exchanger─ZrP. Water contact angle studies indicate that coated ZrP is hydrophobic with an angle of (149.8 ± 2.5°). Simulated small intestine solution studies show that the coated ZrP will bind 94% (±11%) more NH4+ than uncoated ZrP in the presence of Ca2+. Meanwhile, Ca2+ binding decreases by 64% (±6%). The nearly fourfold increase in NH4+ selectivity can be attributed to the gas-permeable and hydrophobic coating applied on the ZrP surface. This work suggests a novel pathway to develop a selective cation exchanger for treating ESKD patients.


Assuntos
Compostos de Amônio , Cátions , Humanos , Água , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA